Hard Surface Disinfecting
HOCL Effects on Microorganisms
Ono, Yamashita et al. (2012). "Microbicidal effect of weak acid hypochlorous solution on various microorganisms." Biocontrol Sci 17(3): 129-133.
“We investigated the microbicidal effect of weak acid hypochlorous solutions of pH 5.0 - 6.0, produced by mixing NaClO and HCl in water, against various bacteria, fungi, and virus in vitro. The weak acid hypochlorous solution had excellent microbicidal effect against a broad microbicidal spectrum of standard strains and clinical isolates in a short time. The microbicidal effects of hypochlorous solutions did not depend on the available chlorine concentration but on the HClO concentration. These results show that the weak acid hypochlorous solution has practical applicability in such places as hospitals and establishments related to the food industry”
1. Mahamat, Brooker et al. (2011). "Impact of hypochlorite disinfection on meticillin-resistant Staphylococcus aureus rate." J Hosp Infect 78(3): 243-245.
“MRSA rates in a hospital in the north east of Scotland were significantly declining due to a series of infection control interventions applied between February 2001 and January 2005. These included terminal disinfection of the environment in isolation rooms and cohort areas using sodium hypochlorite in place of detergent. Stopping the hypochlorite disinfection in February 2005 was associated with an increase in MRSA rates from 10% to 25% (P 1⁄4 0.03) over a six-month period, with rates approaching the pre-intervention levels. Other infection control measures remained unchanged. This work adds significantly to the meagre published evidence that environmental contamination is important in the transmission of MRSA”
2. Environmental control to reduce transmission of Clostridium difficile
Mayfield, Leet et al. (2000). "Environmental control to reduce transmission of Clostridium difficile." Clin Infect Dis 31(4): 995-1000.
“Restrictive antibiotic policies and infection control measures have been shown to reduce the incidence of Clostridium difficile-associated diarrhea (CDAD) among hospitalized patients. To date, the role of environmental disinfectants in reducing nosocomial CDAD rates has not been well studied. In a before-and-after intervention study, patients in 3 units were evaluated to determine if unbuffered 1:10 hypochlorite solution is effective as an environmental disinfectant in reducing the incidence of CDAD. Among 4252 patients, the incidence rate of CDAD for bone marrow transplant patients decreased significantly, from 8.6 to 3.3 cases per 1000 patient-days, after the environmental disinfectant was switched from quaternary ammonium to 1:10 hypochlorite solution in the rooms of patients with CDAD. Reverting later to quaternary ammonium solution increased the CDAD rate to 8.1 cases per 1000 patient-days. Unbuffered 1:10 hypochlorite solution is effective in decreasing patients' risk of developing CDAD in areas where CDAD is highly endemic”
3. Reduction of faecal coliform, coliform and heterotrophic plate count bacteria in the household kitchen and bathroom by disinfection with hypochlorite cleaners
Rusin, Orosz-Coughlin et al. (1998). "Reduction of faecal coliform, coliform and heterotrophic plate count bacteria in the household kitchen and bathroom by disinfection with hypochlorite cleaners." J Appl Microbiol 85(5): 819-828.
“Fourteen sites evenly divided between the household kitchen and bathroom were monitored on a weekly basis for numbers of faecal coliforms, total coliforms and heterotrophic plate count bacteria. The first 10 weeks comprised the control period, hypochlorite cleaning products were introduced into the household during the second 10 weeks, and a strict cleaning regimen using hypochlorite products was implemented during the last 10 weeks. The implementation of a cleaning regimen with common household hypochlorite products resulted in the significant reduction of all three classes of bacteria at these four sites and other household sites”
4. Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant
Yuen, Chung et al. (2015). "Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant." Int J Environ Res Public Health 12(3): 3026-3041.
“A field experimental study was designed with the QAC plus daily hypochlorite cleaning as the experimental group and hypochlorite cleaning alone as the control group. In the experimental group, the mean staphylococcal concentration of bedside surfaces was significantly (p<0.0001) reduced. The results of this study support the view that, in addition to hypochlorite wiping, the tested QAC surfactant is a potential environmental decontamination strategy for preventing the transmission of clinically important pathogens in medical wards”
5. Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments
Hakim, Alam et al. (2016). "Inactivation of bacteria on surfaces by sprayed slightly acidic hypochlorous acid water: in vitro experiments." J Vet Med Sci 78(7): 1123-1128.
The capacity of slightly acidic hypochlorous acid water (SAHW), in both liquid and spray form, to inactivate bacteria was evaluated. SAHW was able to inactivate Escherichia coli and Salmonella Infantis to below detectable levels within 5 sec of exposure. In addition, SAHW antibacterial capacity was evaluated by spraying it using a nebulizer into a box containing these bacteria. SAHW was able to inactivate both bacterial species on the glass plates (dry condition) and rayon sheets within 5 min spraying. Our findings demonstrate that SAHW is a good candidate for biosecurity enhancement. Spraying it on the surfaces of objects, eggshells, egg incubators and transport cages could reduce the chances of contamination and disease transmission”
6. Airborne fungi and bacteria in child daycare centers and the effectiveness of weak acid hypochlorous water on controlling microbes
Chen, Su et al. (2012). "Airborne fungi and bacteria in child daycare centers and the effectiveness of weak acid hypochlorous water on controlling microbes." J Environ Monit 14(10): 2692-2697.
“A three-week-long biological sampling scheme was conducted in two child daycare centers (CDCCs) in order to investigate efficiency of weak acid hypochlorous water (WAHW) on disinfecting indoor microbes. This study clearly clarified the risky period during which children may be exposed to hazardous environments, and demonstrated the effectiveness of spraying WAHW the night before on decontaminating indoor airborne microbes on the following day, especially in the case of fungi”
7. Efficacy of liquid spray decontaminants (with HOCL) for inactivation of Bacillus anthracis spores on building and outdoor materials
Wood, Choi et al. (2011). "Efficacy of liquid spray decontaminants for inactivation of Bacillus anthracis spores on building and outdoor materials." J Appl Microbiol 110(5): 1262-1273. “Decontaminants utilizing hypochlorous acid chemistry was effective to inactivate Bacillus anthracis Ames and Bacillus subtilis spores on building and outdoor materials” may improve clinical symptoms in patients with the common cold”