Aerosols

Effect on Micro-Organisms – Viruses

https://pubmed.ncbi.nlm.nih.gov/20475674/


1. Studies on air-borne virus infections: III. The killing of aerial suspensions of influenza virus by hypochlorous acid

“Recently considerable interest has been taken in the possibility of combating air-borne infection by means of antiseptics dispersed in the air as fine particles. The effect of such bactericidal mists upon virus particles suspended in the air has therefore been studied. A brief reference has already been made to the results of these experiments which showed that aerosols of influenza virus could be rendered non-infective. Preliminary tests suggested that influenza virus was susceptible to mists of hexyl resorcinol in propylene glycol, but only the action of hypochlorite was studied in detail as it appeared the more likely to be of practical value under wartime conditions”

Citation - Edward and Lidwell (1943). "Studies on air-borne virus infections: III. The killing of aerial suspensions of influenza virus by hypochlorous acid." J Hyg (Lond) 43(3): 196-200.

2. Aerosol Disinfection Capacity of Slightly Acidic Hypochlorous Acid Water Towards Newcastle Disease Virus in the Air: An In Vivo Experiment

Hakim, Thammakarn et al. (2015). "Aerosol Disinfection Capacity of Slightly Acidic Hypochlorous Acid Water Towards Newcastle Disease Virus in the Air: An In Vivo Experiment." Avian Dis 59(4): 486-491.

“Here we selected slightly acidic hypochlorous acid water (SAHW) as a candidate and evaluated its virucidal efficacy toward a virus in the air. Three-day-old conventional chicks were challenged with 25 doses of Newcastle disease live vaccine, while at the same time reverse osmosis water as the control and SAHW containing 50 or 100 parts per million (ppm) free available chlorine in pH 6 were sprayed on the treated chicks with other nebulizers. Subsequently, the virus was isolated from the control and 50 ppm treatment groups, while no clinical signs were observed in and no virus was isolated from the 100 ppm treatment group. The virulent Newcastle disease virus (NDV) strain Sato, too, was immediately inactivated by SAHW containing 50 ppm chlorine in the aqueous phase. These data suggest that SAHW containing 100 ppm chlorine can be used for aerosol disinfection of NDV in farms”